Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Behav Brain Res ; : 115005, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641178

RESUMO

BACKGROUND: Post-traumatic stress disorder (PTSD) refers to a chronic impairing psychiatric disorder occurring after exposure to the severe traumatic event. Studies have demonstrated that medicinal cannabis oil plays an important role in neuroprotection, but the mechanism by which it exerts anti-PTSD effects remains unclear. METHODS: The chronic complex stress (CCS) simulating the conditions of long voyage stress for 4 weeks was used to establish the PTSD mice model. After that, behavioral tests were used to evaluate PTSD-like behaviors in mice. Mouse brain tissue index was detected and hematoxylin-eosin staining was used to assess pathological changes in the hippocampus. The indicators of cell apoptosis and the BDNF/TRPC6 signaling activation in the mice hippocampus were detected by western blotting or real-time quantitative reverse transcription PCR experiments. RESULTS: We established the PTSD mice model induced by CCS, which exhibited significant PTSD-like phenotypes, including increased anxiety-like and depression-like behaviors. Medicinal cannabis oil treatment significantly ameliorated PTSD-like behaviors and improved brain histomorphological abnormalities in CCS mice. Mechanistically, medicinal cannabis oil reduced CCS-induced cell apoptosis and enhanced the activation of BDNF/TRPC6 signaling pathway. CONCLUSIONS: We constructed a PTSD model with CCS and medicinal cannabis oil that significantly improved anxiety-like and depressive-like behaviors in CCS mice, which may play an anti-PTSD role by stimulating the BDNF/TRPC6 signaling pathway.

2.
Biotechnol Biofuels Bioprod ; 17(1): 55, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643207

RESUMO

BACKGROUND: The saprophytic filamentous fungus Trichoderma reesei represents one of the most prolific cellulase producers. The bulk production of lignocellulolytic enzymes by T. reesei not only relies on the efficient transcription of cellulase genes but also their efficient secretion after being translated. However, little attention has been paid to the functional roles of the involved secretory pathway in the high-level production of cellulases in T. reesei. Rab GTPases are key regulators in coordinating various vesicle trafficking associated with the eukaryotic secretory pathway. Specifically, Rab7 is a representative GTPase regulating the transition of the early endosome to the late endosome followed by its fusion to the vacuole as well as homotypic vacuole fusion. Although crosstalk between the endosomal/vacuolar pathway and the secretion pathway has been reported, the functional role of Rab7 in cellulase production in T. reesei remains unknown. RESULTS: A TrRab7 was identified and characterized in T. reesei. TrRab7 was shown to play important roles in T. reesei vegetative growth and vacuole morphology. Whereas knock-down of Trrab7 significantly compromised the induced production of T. reesei cellulases, overexpression of the key transcriptional activator, Xyr1, restored the production of cellulases in the Trrab7 knock-down strain (Ptcu-rab7KD) on glucose, indicating that the observed defective cellulase biosynthesis results from the compromised cellulase gene transcription. Down-regulation of Trrab7 was also found to make T. reesei more sensitive to various stresses including carbon starvation. Interestingly, overexpression of Snf1, a serine/threonine protein kinase known as an energetic sensor, partially restored the cellulase production of Ptcu-rab7KD on Avicel, implicating that TrRab7 is involved in an energetic adaptation to carbon starvation which contributes to the successful cellulase gene expression when T. reesei is transferred from glucose to cellulose. CONCLUSIONS: TrRab7 was shown to play important roles in T. reesei development and a stress response to carbon starvation resulting from nutrient shift. This adaptation may allow T. reesei to successfully initiate the inducing process leading to efficient cellulase production. The present study provides useful insights into the functional involvement of the endosomal/vacuolar pathway in T. reesei development and hydrolytic enzyme production.

3.
Med Phys ; 51(4): 2413-2423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431967

RESUMO

BACKGROUND: Individuals with asthma can vary widely in clinical presentation, severity, and pathobiology. Hyperpolarized xenon-129 (Xe129) MRI is a novel imaging method to provide 3-D mapping of both ventilation and gas exchange in the human lung. PURPOSE: To evaluate the functional changes in adults with asthma as compared to healthy controls using Xe129 MRI. METHODS: All subjects (20 controls and 20 asthmatics) underwent lung function measurements and Xe129 MRI on the same day. Outcome measures included the pulmonary ventilation defect and transfer of inspired Xe129 into two soluble compartments: tissue and blood. Ten asthmatics underwent Xe129 MRI before and after bronchodilator to test whether gas transfer measures change with bronchodilator effects. RESULTS: Initial analysis of the results revealed striking differences in gas transfer measures based on age, hence we compared outcomes in younger (n = 24, ≤ 35 years) versus older (n = 16, > 45 years) asthmatics and controls. The younger asthmatics exhibited significantly lower Xe129 gas uptake by lung tissue (Asthmatic: 0.98% ± 0.24%, Control: 1.17% ± 0.12%, P = 0.035), and higher Xe129 gas transfer from tissue to the blood (Asthmatic: 0.40 ± 0.10, Control: 0.31% ± 0.03%, P = 0.035) than the younger controls. No significant difference in Xe129 gas transfer was observed in the older group between asthmatics and controls (P > 0.05). No significant change in Xe129 transfer was observed before and after bronchodilator treatment. CONCLUSIONS: By using Xe129 MRI, we discovered heterogeneous alterations of gas transfer that have associations with age. This finding suggests a heretofore unrecognized physiological derangement in the gas/tissue/blood interface in young adults with asthma that deserves further study.


Assuntos
Asma , Broncodilatadores , Adulto Jovem , Humanos , Adulto , Broncodilatadores/uso terapêutico , Barreira Alveolocapilar , Pulmão/diagnóstico por imagem , Asma/diagnóstico por imagem , Asma/tratamento farmacológico , Isótopos de Xenônio , Imageamento por Ressonância Magnética/métodos , Xenônio/uso terapêutico
4.
JAMA Netw Open ; 7(3): e241556, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38457181

RESUMO

Importance: The optimal timing for fixation of extremity fractures after traumatic brain injury (TBI) remains controversial. Objective: To investigate whether patients who underwent extremity fixation within 24 hours of TBI experienced worse outcomes than those who had the procedure 24 hours or more after TBI. Design, Setting, and Participants: This cohort study used data from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Patients 16 years or older with TBI who underwent internal extremity fixation met inclusion criteria. To compare outcomes, patients who underwent the procedure within 24 hours were propensity score matched with those who underwent it 24 hours or later. Patients were treated from December 9, 2014, to December 17, 2017. Data analysis was conducted between August 1, 2022, and December 25, 2023. Main Outcomes and Measures: The primary outcome was an unfavorable functional status at 6 months (Glasgow Outcome Scale-Extended [GOSE] score ≤4). Results: A total of 253 patients were included in this study. The median age was 41 (IQR, 27-57) years, and 184 patients (72.7%) were male. The median Injury Severity Score (ISS) was 41 (IQR, 27-49). Approximately half of the patients (122 [48.2%]) had a mild TBI while 120 (47.4%) had moderate to severe TBI. Seventy-four patients (29.2%) underwent an internal extremity fixation within 24 hours, while 179 (70.8%) had the procedure 24 hours or later. At 6 months, 86 patients (34.0%) had an unfavorable functional outcome. After propensity score matching, there were no statistically significant differences in unfavorable functional outcomes at 6 months (odds ratio [OR], 1.12 [95% CI, 0.51-1.99]; P = .77) in patients with TBI of any severity. Similar results were observed in patients with mild TBI (OR, 0.71 [95% CI, 0.22-2.29]; P = .56) and moderate to severe TBI (OR, 1.08 [95% CI, 0.32-3.70]; P = .90). Conclusions and Relevance: The outcomes of extremity fracture fixation performed within 24 hours after TBI appear not to be worse than those of procedures performed 24 hours or later. This finding suggests that early fixation after TBI could be considered in patients with mild head injuries.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Fraturas Ósseas , Adulto , Humanos , Masculino , Feminino , Estudos de Coortes , Lesões Encefálicas Traumáticas/cirurgia , Fraturas Ósseas/cirurgia , Extremidades
5.
ACS Appl Mater Interfaces ; 16(9): 11585-11594, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38404137

RESUMO

The ether-based electrolytes show excellent performance on anodes in sodium-ion batteries (SIBs), but they still show poor compatibility with the cathodes. Here, ether electrolytes with NaBF4 as the main salt or additive were applied in NFM//HC full cells and showed enhanced performance than the electrolyte with NaPF6. Then, BF4- was found to have a stronger interaction with Na+, which could reduce the solvation of Na+ with the solvent, thus inducing the formation of the cathode electrolyte interface (CEI) and solid electrolyte interface (SEI) layers rich in inorganic species. Moreover, the morphology, structure, composition, and solubility of CEI and SEI were explored, concluding that NaBF4 could induce more stable CEI and SEI layers rich in B-containing species and inorganics. This work proposes using NaBF4 as the main salt or additive to improve the performance of ether electrolytes in NFM//HC full cells, which provides a strategy to improve the compatibility of ether-based electrolytes and cathodes.

6.
Small ; : e2310318, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183374

RESUMO

Low-cost and high-efficiency non-precious metal-based oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) bifunctional catalysts are the key to promoting the commercial application of metal-air batteries. Herein, a highly efficient catalyst of Fe0.18 Co0.82 alloy anchoring on the nitrogen-doped porous carbon hollow sphere (Fex Co1-x /N-C) is intelligently designed by spray pyrolysis (SP). The zinc in the SP-derived metal oxides and metal-organic framework volatilize at high temperature to construct a hierarchical porous structure with abundant defects and fully exposes the FeCo nanoparticles which uniformly anchor on the carbon substrate. In this structure, the coexistence of Fe0.18 Co0.82 alloy and binary metal active sites (Fe-Nx /Co-Nx ) guarantees the Fe0.2 Co0.8 /N-C catalyst exhibiting an excellent half-wave potential (E1/2 ═ 0.84 V) superior to 20% Pt/C for ORR and a suppressed overpotential (280 mV) than RuO2 for OER. Assembled rechargeable Zn-air battery (RZAB) demonstrates a promising specific capacity of 807.02 mAh g-1 , peak power density of 159.08 mW cm-2 and durability without electrolyte circulation (550 h). This work proposes the design concept of utilizing an oxide core to in situ consume the porous carbon shell for anchoring metal active sites and construct defects, which benefits from spray pyrolysis in achieving precise control of the alloy structure and mass preparation.

7.
Chin J Nat Med ; 22(1): 31-46, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38278557

RESUMO

Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.


Assuntos
Medicamentos de Ervas Chinesas , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Fígado/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Matriz Extracelular/metabolismo
8.
FEBS Open Bio ; 14(1): 138-147, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37953466

RESUMO

Extracellular vesicles (EV), important messengers in intercellular communication, can load and transport various bioactive components and participate in different biological processes. We previously isolated glioma human endothelial cells (GhECs) and found that GhECs, rather than normal human brain endothelial cells (NhECs), exhibit specific enrichment of MYO1C into EVs and promote the migration of glioma cells. In this study, we explored the mechanism by which MYO1C is secreted into EVs. We report that such secretion is dependent on RAB31, RAB27B, and FAS. When expression of RAB31 increases, MYO1C is enriched in secretory EVs. Finally, we identified an EV export mechanism for MYO1C that promotes glioma cell invasion and is dependent on RAB31 in GhECs. In summary, our data indicate that the knockdown of RAB31 can reduce enrichment of MYO1C in extracellular vesicles, thereby attenuating the promotion of glioma cell invasion by GhEC-EVs.


Assuntos
Vesículas Extracelulares , Glioma , Humanos , Células Endoteliais/metabolismo , Glioma/genética , Glioma/metabolismo , Transporte Biológico , Vesículas Extracelulares/metabolismo , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
9.
NMR Biomed ; 37(2): e5051, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37926525

RESUMO

The objective of the current study was to develop and evaluate a DEep learning-based rapid Spiral Image REconstruction (DESIRE) and deep learning (DL)-based segmentation approach to quantify the left ventricular ejection fraction (LVEF) for high-resolution spiral real-time cine imaging, including 2D balanced steady-state free precession imaging at 1.5 T and gradient echo (GRE) imaging at 1.5 and 3 T. A 3D U-Net-based image reconstruction network and 2D U-Net-based image segmentation network were proposed and evaluated. Low-rank plus sparse (L+S) served as the reference for the image reconstruction network and manual contouring of the left ventricle was the reference of the segmentation network. To assess the image reconstruction quality, structural similarity index, peak signal-to-noise ratio, normalized root-mean-square error, and blind grading by two experienced cardiologists (5: excellent; 1: poor) were performed. To assess the segmentation performance, quantification of the LVEF on GRE imaging at 3 T was compared with the quantification from manual contouring. Excellent performance was demonstrated by the proposed technique. In terms of image quality, there was no difference between L+S and the proposed DESIRE technique. For quantification analysis, the proposed DL method was not different to the manual segmentation method (p > 0.05) in terms of quantification of LVEF. The reconstruction time for DESIRE was ~32 s (including nonuniform fast Fourier transform [NUFFT]) per dynamic series (40 frames), while the reconstruction time of L+S with GPU acceleration was approximately 3 min. The DL segmentation takes less than 5 s. In conclusion, the proposed DL-based image reconstruction and quantification techniques enabled 1-min image reconstruction for the whole heart and quantification with automatic reconstruction and quantification of the left ventricle function for high-resolution spiral real-time cine imaging with excellent performance.


Assuntos
Aprendizado Profundo , Volume Sistólico , Imagem Cinética por Ressonância Magnética/métodos , Função Ventricular Esquerda , Imageamento Tridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética
10.
J Colloid Interface Sci ; 658: 209-218, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38103471

RESUMO

Industrial solid waste management and recycling are important to environmental sustainability. In this study, cobalt (Co) nanoparticles encapsulated in paint sludge-derived activated carbon (AC) were fabricated. The Co-AC possessed high conductivity, magnetic properties and abundant metal oxide impurities (TiAlSiOx), which was applied as multifunctional catalyst for peroxymonosulfate (PMS) activation. Compared to pure AC, the Co-AC exhibited significant enhanced performance for degradation of tetracycline hydrochloride (TCH) via PMS activation. Mechanism studies by in situ Raman spectroscopy, Fourier infrared spectroscopy, electrochemical analysis and electron paramagnetic resonance suggested that surface-bonded PMS (PMS*) and singlet oxygen (1O2) are the dominant reactive species for TCH oxidation. The non-radical species can efficiently oxidize electron-rich pollutants with high efficiency, which minimized the consumption of PMS and the catalyst. The removal percentages of TCH reached 97 % within 5 min and âˆ¼ 99 % within 15 min in the Co-AC/PMS system. The Co active sites facilitated PMS adsorption to form the PMS* and the TiAlSiOx impurities provided abundant oxygen vacancy for generation of the 1O2. In addition, the Co-AC/PMS system achieved high efficiency and stability for oxidation of the target pollutants over a long-term continuous operation. This work not only offers a cost-effective approach for recycling industrial waste but also provides new insights into the application of waste-derived catalyst for environmental remediation.

11.
Small ; : e2308678, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990362

RESUMO

Lithium (Li) metal is regarded as a potential candidate for the next generation of lithium secondary batteries, but it has poor cycling stability with the broadly used carbonate-based electrolytes due to the uncontrollable dendritic growth and low Coulombic efficiency (CE). LiNO3 is an effective additive and its limited solubility (<800 ppm) in carbonate-based electrolytes is still a challenge, as reported. Herein, using BF3 (Lewis acid) is proposed to enhance the solubility of LiNO3 in carbonate-based electrolytes. The dissolved NO3 - can be involved in the first solvation shell of Li+ , reducing the coordination number of PF6 - and EC (ethylene carbonate). In addition, the NO3 - is proved to be preferentially reduced on Li metal by differential electrochemical mass spectrometry so that the decomposition of PF6 - and EC is suppressed. Therefore, a SEI layer containing Li3 N can be obtained, which exhibits high lithium-ion conductivity, achieving even and dense Li deposits. Consequently, the CE of Li||Cu cell with BF3 /LiNO3 can be increased to 98.07%. Moreover, the capacity retention of Li||LiFePO4 with a low N/P ratio (3:1) is as high as 90% after 300 cycles (≈1500 h). This work paved a new way for incorporating LiNO3 into carbonate-based electrolytes and high-performance lithium metal batteries.

12.
Signal Transduct Target Ther ; 8(1): 424, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37935665

RESUMO

Glioma is the most prevalent brain tumor, presenting with limited treatment options, while patients with malignant glioma and glioblastoma (GBM) have poor prognoses. The physical obstacle to drug delivery imposed by the blood‒brain barrier (BBB) and glioma stem cells (GSCs), which are widely recognized as crucial elements contributing to the unsatisfactory clinical outcomes. In this study, we found a small molecule, gambogic amide (GA-amide), exhibited the ability to effectively penetrate the blood-brain barrier (BBB) and displayed a notable enrichment within the tumor region. Moreover, GA-amide exhibited significant efficacy in inhibiting tumor growth across various in vivo glioma models, encompassing transgenic and primary patient-derived xenograft (PDX) models. We further performed a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) knockout screen to determine the druggable target of GA-amide. By the combination of the cellular thermal shift assay (CETSA), the drug affinity responsive target stability (DARTS) approach, molecular docking simulation and surface plasmon resonance (SPR) analysis, WD repeat domain 1 (WDR1) was identified as the direct binding target of GA-amide. Through direct interaction with WDR1, GA-amide promoted the formation of a complex involving WDR1, MYH9 and Cofilin, which accelerate the depolymerization of F-actin to inhibit the invasion of patient-derived glioma cells (PDCs) and induce PDC apoptosis via the mitochondrial apoptotic pathway. In conclusion, our study not only identified GA-amide as an effective and safe agent for treating glioma but also shed light on the underlying mechanisms of GA-amide from the perspective of cytoskeletal homeostasis.


Assuntos
Glioma , Humanos , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Citoesqueleto , Amidas , Proteínas dos Microfilamentos/uso terapêutico
13.
MAGMA ; 36(6): 857-867, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37665502

RESUMO

OBJECTIVE: To develop two spiral-based bSSFP pulse sequences combined with L + S reconstruction for accelerated ungated, free-breathing dynamic cardiac imaging at 1.5 T. MATERIALS AND METHODS: Tiny golden angle rotated spiral-out and spiral-in/out bSSFP sequences combined with view-sharing (VS), compressed sensing (CS), and low-rank plus sparse (L + S) reconstruction were evaluated and compared via simulation and in vivo dynamic cardiac imaging studies. The proposed methods were then validated against the standard cine, in terms of quantitative image assessment and qualitative quality rating. RESULTS: The L + S method yielded the least residual artifacts and the best image sharpness among the three methods. Both spiral cine techniques showed clinically diagnostic images (score > 3). Compared to standard cine, there were significant differences in global image quality and edge sharpness for spiral cine techniques, while there was significant difference in image contrast for the spiral-out cine but no significant difference for the spiral-in/out cine. There was good agreement in left ventricular ejection fraction for both the spiral-out cine (- 1.6 [Formula: see text] 3.1%) and spiral-in/out cine (- 1.5 [Formula: see text] 2.8%) against standard cine. DISCUSSION: Compared to the time-consuming standard cine (~ 5 min) which requires ECG-gating and breath-holds, the proposed spiral bSSFP sequences achieved ungated, free-breathing cardiac movies at a similar spatial (1.5 × 1.5 × 8 mm3) and temporal resolution (36 ms) per slice for whole heart coverage (10-15 slices) within 45 s, suggesting the clinical potential for improved patient comfort or for imaging patients with arrhythmias or who cannot hold their breath.


Assuntos
Coração , Imagem Cinética por Ressonância Magnética , Função Ventricular Esquerda , Humanos , Suspensão da Respiração , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagem Cinética por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Volume Sistólico
14.
Mater Horiz ; 10(12): 5656-5665, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37766462

RESUMO

Thermally conductive materials (TCMs) are highly desirable for thermal management applications to tackle the "overheating" concerns in the electronics industry. Despite recent progress, the development of high performance TCMs integrated with an in-plane thermal conductivity (TC) higher than 50.0 W (m K)-1 and a through-plane TC greater than 10.0 W (m K)-1 is still challenging. Herein, self-standing liquid metal@boron nitride (LM@BN) bulks with ultrahigh in-plane TC and through-plane TC were reported for the first time. In the LM@BN bulks, LM could serve as a bonding and thermal linker among the oriented BN platelets, thus remarkably accelerating heat transfer across the whole system. Benefiting from the formation of a unique structure, the LM@BN bulk achieved an ultrahigh in-plane TC of 82.2 W (m K)-1 and a through-plane TC of 20.6 W (m K)-1, which were among the highest values ever reported for TCMs. Furthermore, the LM@BN bulks exhibited superior compressive and leakage-free performances, with a high compressive strength (5.2 MPa) and without any LM leakage even after being crushed. It was also demonstrated that the excellent TCs of the LM@BN bulks made them effectively cool high-power light emitting diode modules. This work opens up one promising pathway for the development of high-performance TCMs for thermal management in the electronics industry.

15.
Small ; 19(52): e2304162, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37642534

RESUMO

Ether-based electrolytes exhibit excellent performance when applied in different anode materials of sodium ion batteries (SIBs), but their exploration on cathode material is deficient and the degradation mechanism is still undiscovered. Herein, various battery systems with different operation voltage ranges are designed to explore the electrochemical performance of ether electrolyte. It is found for the first time that the deterioration mechanism of ether electrolyte is closely related to the "redox shuttle" between cathode and low-potential anode. The "shuttle" is discovered to occur when the potential of anodes is below 0.57 V, and the gas products coming from "shuttle" intermediates are revealed by differential electrochemical mass spectrometry (DEMS). Moreover, effective inhibition strategies by protecting low-potential anodes are proposed and verified; ethylene carbonate (EC) is found to be very effective as an additive by forming an inorganics-rich solid electrolyte interphase (SEI) on low-potential anodes, thereby suppressing the deterioration of ether electrolytes. This work reveals the failure mechanism of ether-based electrolytes applied in SIBs and proposes effective strategies to suppress the "shuttle," which provides a valuable guidance for advancing the application of ether-based electrolytes in SIBs.

16.
J Hazard Mater ; 459: 132250, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37567141

RESUMO

Pathogenic bacteria contamination poses a major threat to human health. The detection of low-abundance bacteria in complex samples has always been a knotty problem, and high-sensitivity bacterial detection remains challenging. In this work, a novel magnetic platform with high enrichment efficiency for L. monocytogenes was developed. The magnetic platform was designed by branched polyglutamic acid-mediated indirect coupling of cefepime on magnetic nanoparticles (Cefe-PGA-MNPs), and the specific enrichment of low-abundance L. monocytogenes in real samples was achieved by an external magnet, with a capture efficiency over 90%. A controllable and highly active platinum-palladium nanozyme was synthesized and further introduced in the magnetic nanoplatform for the construction of enzymatic colorimetric biosensor. The total detection time for L. monocytogenes was within 100 min. The colorimetric signals generated by labelled nanozyme were corresponding to different concentrations of L. monocytogenes, with a limit of detection (LOD) of 3.1 × 101 CFU/mL, and high reliability and accuracy (with a recovery rate ranging from 96.5% to 116.4%) in the test of real samples. The concept of the developed method is applicable to various fields of biosensing that rely on magnetic separation platforms.


Assuntos
Técnicas Biossensoriais , Cytisus , Listeria monocytogenes , Humanos , Colorimetria , Reprodutibilidade dos Testes , Smartphone , Técnicas Biossensoriais/métodos , Fenômenos Magnéticos , Microbiologia de Alimentos
17.
Planta ; 258(2): 34, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37378818

RESUMO

MAIN CONCLUSION: Transcriptomics and methylomics were used to identify the potential effects resulting from GM rice breeding stacks, which provided scientific data for the safety assessment strategy of stacked GM crops in China. Gene interaction is one of the main concerns for stacked genetically modified crop safety. With the development of technology, the combination of omics and bioinformatics has become a useful tool to evaluate the unintended effects of genetically modified crops. In this study, transcriptomics and methylomics were used as molecular profiling techniques to identify the potential effects of stack through breeding. Stacked transgenic rice En-12 × Ec-26 was used as material, which was obtained through hybridization using parents En-12 and Ec-26, in which the foreign protein can form functional EPSPS protein by intein-mediated trans-splitting. Differentially methylated region (DMR) analysis showed that the effect of stacking breeding on methylation was less than that of genetic transformation at the methylome level. Differentially expressed gene (DEG) analysis showed that the DEGs between En-12 × Ec-26 and its parents were far fewer than those between transgenic rice and Zhonghua 11 (ZH11), and no unintended new genes were found in En-12 × Ec-26. Statistical analysis of gene expression and methylation involved in shikimic acid metabolism showed that there was no difference in gene expression, although there were 16 and 10 DMR genes between En-12 × Ec-26 and its parents (En and Ec) in methylation, respectively. The results indicated that the effect of stacking breeding on gene expression and DNA methylation was less than the effect of genetic transformation. This study provides scientific data supporting safety assessments of stacked GM crops in China.


Assuntos
Oryza , Transcriptoma , Animais , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Oryza/genética , Oryza/metabolismo , Produtos Agrícolas/genética , Epigenoma , Melhoramento Vegetal , Animais Geneticamente Modificados
18.
MAGMA ; 36(3): 465-475, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37306784

RESUMO

OBJECTIVE: Diagnostic-quality neuroimaging methods are vital for widespread clinical adoption of low field MRI. Spiral imaging is an efficient acquisition method that can mitigate the reduced signal-to-noise ratio at lower field strengths. As concomitant field artifacts are worse at lower field, we propose a generalizable quadratic gradient-field nulling as an echo-to-echo compensation and apply it to spiral TSE at 0.55 T. MATERIALS AND METHODS: A spiral in-out TSE acquisition was developed with a compensation for concomitant field variation between spiral interleaves, by adding bipolar gradients around each readout to minimize phase differences at each refocusing pulse. Simulations were performed to characterize concomitant field compensation approaches. We demonstrate our proposed compensation method in phantoms and (n = 8) healthy volunteers at 0.55 T. RESULTS: Spiral read-outs with integrated spoiling demonstrated strong concomitant field artifacts but were mitigated using the echo-to-echo compensation. Simulations predicted a decrease of concomitant field phase RMSE between echoes of 42% using the proposed compensation. Spiral TSE improved SNR by 17.2 ± 2.3% compared to reference Cartesian acquisition. DISCUSSION: We demonstrated a generalizable approach to mitigate concomitant field artifacts for spiral TSE acquisitions via the addition of quadratic-nulling gradients, which can potentially improve neuroimaging at low-field through increased acquisition efficiency.


Assuntos
Encéfalo , Aumento da Imagem , Humanos , Aumento da Imagem/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Razão Sinal-Ruído , Artefatos
19.
Bioengineering (Basel) ; 10(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37370667

RESUMO

The pelvis and its surrounding soft tissues create a complicated mechanical environment that greatly affects the success of fixing broken pelvic bones with surgical navigation systems and/or surgical robots. However, the modeling of the pelvic structure with the more complex surrounding soft tissues has not been considered in the current literature. The study developed an integrated finite element model of the pelvis, which includes bone and surrounding soft tissues, and verified it through experiments. Results from the experiments showed that including soft tissue in the model reduced stress and strain on the pelvis compared to when it was not included. The stress and strain distribution during pelvic loading was similar to what is typically seen in research studies and more accurate in modeling the pelvis. Additionally, the correlation with the experimental results from the predecessor's study was strong (R2 = 0.9627). The results suggest that the integrated model established in this study, which includes surrounding soft tissues, can enhance the comprehension of the complex biomechanics of the pelvis and potentially advance clinical interventions and treatments for pelvic injuries.

20.
Biomedicines ; 11(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37371626

RESUMO

PURPOSE: The existing tools to quantify lung function in interstitial lung diseases have significant limitations. Lung MRI imaging using inhaled hyperpolarized xenon-129 gas (129Xe) as a contrast agent is a new technology for measuring regional lung physiology. We sought to assess the utility of the 129Xe MRI in detecting impaired lung physiology in usual interstitial pneumonia (UIP). MATERIALS AND METHODS: After institutional review board approval and informed consent and in compliance with HIPAA regulations, we performed chest CT, pulmonary function tests (PFTs), and 129Xe MRI in 10 UIP subjects and 10 healthy controls. RESULTS: The 129Xe MRI detected highly heterogeneous abnormalities within individual UIP subjects as compared to controls. Subjects with UIP had markedly impaired ventilation (ventilation defect fraction: UIP: 30 ± 9%; healthy: 21 ± 9%; p = 0.026), a greater amount of 129Xe dissolved in the lung interstitium (tissue-to-gas ratio: UIP: 1.45 ± 0.35%; healthy: 1.10 ± 0.17%; p = 0.014), and impaired 129Xe diffusion into the blood (RBC-to-tissue ratio: UIP: 0.20 ± 0.06; healthy: 0.28 ± 0.05; p = 0.004). Most MRI variables had no correlation with the CT and PFT measurements. The elevated level of 129Xe dissolved in the lung interstitium, in particular, was detectable even in subjects with normal or mildly impaired PFTs, suggesting that this measurement may represent a new method for detecting early fibrosis. CONCLUSION: The hyperpolarized 129Xe MRI was highly sensitive to regional functional changes in subjects with UIP and may represent a new tool for understanding the pathophysiology, monitoring the progression, and assessing the effectiveness of treatment in UIP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...